
人工智能已经在“听、说、看”等感知智能领域已经达到或超越了人类水准,但在需要外部知识、逻辑推理或者领域迁移的认知智能领域还处于初级阶段。认知智能将从认知心理学、脑科学及人类社会历史中汲取灵感,并结合跨领域知识图谱、因果推理、持续学习等技术,建立稳定获取和表达知识的有效机制,让知识能够被机器理解和运用,实现从感知智能到认知智能的关键突破。
【趋势二】

冯诺伊曼架构的存储和计算分离,已经不适合数据驱动的人工智能应用需求。频繁的数据搬运导致的算力瓶颈以及功耗瓶颈已经成为对更先进算法探索的限制因素。类似于脑神经结构的存内计算架构将数据存储单元和计算单元融合为一体,能显著减少数据搬运,极大提高计算并行度和能效。计算存储一体化在硬件架构方面的革新,将突破AI算力瓶颈。
【趋势三】
工业互联网的超融合

【趋势四】
机器间大规模协作成为可能

传统单体智能无法满足大规模智能设备的实时感知、决策。 物联网协同感知技术、5G通信技术的发展将实现多个智能体之间的协同——机器彼此合作、相互竞争共同完成目标任务。 多智能体协同带来的群体智能将进一步放大智能系统的价值: 大规模智能交通灯调度将实现动态实时调整,仓储机器人协作完成货物分拣的高效协作,无人驾驶车可以感知全局路况,群体无人机协同将高效打通最后一公里配送。
【趋势五】
模块化降低芯片设计门槛

【趋势六】
规模化生产级区块链应用将走入大众

区块链BaaS(Blockchain as a Service)服务将进一步降低企业应用区块链技术的门槛,专为区块链设计的端、云、链各类固化核心算法的硬件芯片等也将应运而生,实现物理世界资产与链上资产的锚定,进一步拓展价值互联网的边界、实现万链互联。未来将涌现大批创新区块链应用场景以及跨行业、跨生态的多维协作,日活千万以上的规模化生产级区块链应用将会走入大众。
【趋势七】
量子计算进入攻坚期

2019年,“量子霸权”之争让量子计算在再次成为世界科技焦点。超导量子计算芯片的成果,增强了行业对超导路线及对大规模量子计算实现步伐的乐观预期。2020年量子计算领域将会经历投入进一步增大、竞争激化、产业化加速和生态更加丰富的阶段。作为两个最关键的技术里程碑,容错量子计算和演示实用量子优势将是量子计算实用化的转折点。未来几年内,真正达到其中任何一个都将是十分艰巨的任务,量子计算将进入技术攻坚期。
【趋势八】
新材料推动半导体器件革新

【趋势九】
保护数据隐私的AI技术将加速落地

【趋势十】
云成为IT技术创新的中心

特别声明:
文章来源:阿里云
原文链接:https://mp.weixin.qq.com/s/oU5UCKt0Yc8QYphI5JJnKA
未经允许不得转载:RPA中国 | RPA全球生态 | 数字化劳动力 | RPA新闻 | 推动中国RPA生态发展 | 流 > 达摩院2020十大科技趋势
热门信息
阅读 (14728)
1 2023第三届中国RPA+AI开发者大赛圆满收官&获奖名单公示阅读 (13753)
2 《Market Insight:中国RPA市场发展洞察(2022)》报告正式发布 | RPA中国阅读 (13055)
3 「RPA中国杯 · 第五届RPA极客挑战赛」成功举办及获奖名单公示阅读 (12964)
4 与科技共赢,与产业共进,第四届ISIG中国产业智能大会成功召开阅读 (11567)
5 《2022年中国流程挖掘行业研究报告》正式发布 | RPA中国