当你手上有一份招股说明书的草稿,你会采用什么方式复核各类表格中需要计算的数字呢?
有的人可能会选择使用word插件来复核加总结果,但这种方式智能复核加法,对于减法就无能为力了。
有的人可能会选择打开一张excel表格,将word中需要校验的表格复制在excel中,利用excel函数进行校验
这些都不失为有效的方法,但如果需要快速、准确地复核几份招股说明书、债券募集说明书、年报等文档时,恐怕大家手速再快也会应接不暇了。
在计算机技术蓬勃发展的今天,你是否想过,曾经侵占你过多时间的这项机械劳动,可以交由人工智能代劳呢?
达观数据最近新推出的财债通产品专门为券商、银行等机构提供AI智能解决方案,专攻招股说明书、债券募集说明书、各类年报、财务报表、银行流水的审核、抽取与解析,并从财务信息披露、财务逻辑核查、发行信息披露、文字合规与合理性等方面进行全方位、高准度的文档处理,旨在准确高效地减少从业人员重复劳动,提升工作效率。
今天,我们重点介绍财债通产品财务一致性审核中的重磅功能——单表格计算审查。
一、财务逻辑关系审查

1、不是所有的项目都需要加总
例如,在上图的表格中,合计项“营业收入”在最上方,营业收入=木浆+铜版纸+其他,系统在自动计算时,需要识别出加总核对的具体项目位置。
这类表格的计算逻辑与格式样式与券商拿到的中介机构提供的第三方文档的格式及报告撰写者的个人风格有很大关联,样式无法穷举,利用单纯累积格式写正则的方法无法解决全部问题,这也是充分体现AI功力的地方。
达观数据财债通采用统计学与AI自主学习的方法,让计算机通过深度学习技术了解各类表格的格式与计算方法,轻松地找出报告中的各类计算错误,并通过计算方法展现、建议值提供等方式,帮助用户加强人机交互能力,以多快好准地实现报告复核的目标。
财债通对表格内容的准确定位得益于其在产品中设计并实现了一种基于OpenCV和Faster R-CNN深度学习模型的表格抽取算法。 通过使用OpenCV方法识别有线条表格识别、使用深度学习方法识别一般表格,并将二者的识别结果进行融合。
这种方法在CCKS主办方的测试集上达到接近100%的准确率,且目前财债通已在中信建投、兴业银行、招商证券、深交所等金融机构的债券募集说明书和年报审核等场景中发挥作用。
在测试中我们发现,几乎每份公开发表的招股书或募集说明书中都存在或多或少的单表格计算错误。在上万份数据的校验与测试中,财债通能够找到绝大部分的单表格计算错误,并通过人机交互的方式,报告审核的准确率得到了大幅度的提升。
特别声明:
文章来源:达观数据(Datagrand_)
原文链接:https://mp.weixin.qq.com/s/CNjTmAoO2wUSvpPq4LoCtw
RPA中国推荐阅读,转载此文是出于传递更多信息之目的。如有来源标注错误或侵权,请联系更正或删除,谢谢。
未经允许不得转载:RPA中国 | 数字化劳动力 | RPA新闻 | 推动中国RPA生态发展 | 流程自动化 | 流程机器人 | 数字员工 > 财务自动化,AI复核表内计算,给力!
热门信息
阅读 (7671)
1 “产业创新 · 生态突围” 2020INNO CHINA中国产业创新大会暨中国流程自动化产业年度峰会圆满召开阅读 (6293)
2 重磅揭晓!2020 INNO CHINA中国产业创新奖耀眼出炉阅读 (6270)
3 SAP Intelligent RPA 2.0全新产品重磅发布,开启数字化智能化新征程阅读 (6197)
4 数字化时代,财务需要进行4项革新阅读 (6192)
5 2020 INNO CHINA中国产业创新大会暨RPA+AI开发者论坛成功召开